Substrate specificity and plasticity of FERM-containing protein tyrosine phosphatases.
نویسندگان
چکیده
Epidermal growth factor receptor (EGFR) pathway substrate 15 (Eps15) is a newly identified substrate for protein tyrosine phosphatase N3 (PTPN3), which belongs to the FERM-containing PTP subfamily comprising five members including PTPN3, N4, N13, N14, and N21. We solved the crystal structures of the PTPN3-Eps15 phosphopeptide complex and found that His812 of PTPN3 and Pro850 of Eps15 are responsible for the specific interaction between them. We defined the critical role of the additional residue Tyr676 of PTPN3, which is replaced by Ile939 in PTPN14, in recognition of tyrosine phosphorylated Eps15. The WPD loop necessary for catalysis is present in all members but not PTPN21. We identified that Glu instead of Asp in the WPE loop contributes to the catalytic incapability of PTPN21 due to an extended distance beyond protonation targeting a phosphotyrosine substrate. Together with in vivo validations, our results provide novel insights into the substrate specificity and plasticity of FERM-containing PTPs.
منابع مشابه
PKA protein kinase A PTKs protein tyrosine kinases PTPs protein tyrosine phosphatases RPTPs receptor-like tyrosine phosphatases SFKs Src family PTKs Shps SH2-domain-containing PTPs
Protein tyrosine phosphatases (PTPs), the enzymes that dephosphorylate tyrosyl phosphoproteins, were initially believed to be few in number and serve a ‘housekeeping’ role in signal transduction. Recent work indicates that this is totally incorrect. Instead, PTPs comprise a large superfamily whose members play critical roles in a wide variety of cellular processes. Moreover, PTPs exhibit exquis...
متن کاملProbing the phosphopeptide specificities of protein tyrosine phosphatases, SH2 and PTB domains with combinatorial library methods.
Protein tyrosine phosphatases, SH2 and PTB domains are crucial elements for cellular signal transduction and regulation. Much effort has been directed towards elucidating their specificity in the past decade using a variety of approaches. Combinatorial library methods have contributed significantly to the understanding of substrate and ligand specificity of phosphoprotein recognizing domains. T...
متن کاملThe Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK–Receptor Interactions
The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAK...
متن کاملModulation of Catalytic Activity in Multi-Domain Protein Tyrosine Phosphatases
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosph...
متن کاملPhosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases
Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2015